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Classical studies of ascidian embryogenesis, especially Conklin's (1905) excellent

description, have established that ascidian gastrulation begins during seventh cleav-

age (see Berrill, 1955, Table II). That is, the most dramatic changes in cellular

morphology and architecture occur in the embryo composed of about 100 to 200

cells. This number is quite small, compared to that of an early gastrula of other

animals; the early gastrula of sea urchins consists of about 800 cells (Hine-

gardner, 1967), and the number of constituent cells of an amphibian gastrula is

about 13,000 (Kara, 1977).

Scanning electron microscopy (SEM) is a powerful method of accurately and

efficiently representing the complex three-dimensional morphology of rapidly

growing embryonic systems (Waterman, 1972). Not only does SEM provide
abundant opportunities for visualizing the surface features of developing embryos,
but also observations with SEM of cut or fractured surfaces can provide informa-

tion regarding the cellular architecture of embryos and the internal surface topog-

raphy of hollow structure. During the past few years, several workers, utilizing

SEM, have analysed morphological changes of the cell surface during gastrulation
in a variety of animals (Monroy, Baccetti and Denis-Donini, 1976; Keller and

Schoenwolf, 1977; Turner and Mahowald, 1977). The present paper deals with

cellular morphology, contact and arrangement in the blastula, gastrula and

neurula stages of the ascidian, Halocynthia roretsi, as examined by SEM. The
observations have emphasized several characteristic features of the early mor-

phogenesis of the ascidian egg.

MATERIALS AND METHODS

Naturally spawned eggs of the ascidian, Halocynthia rorctzl, were reared in

filtered sea water at room temperature (15-16 C). The embryos were fixed either

in 2.0% glutaraldehyde in 0.1 M cacodylate in sea water (pH, 8.1) or in 1.0%
osmium tetroxide in 0.1 M cacodylate in sea water, and rinsed in the buffered sea

water. After removal of the chorion, the embryos were dehydrated through a

graded series of ethanols. To reveal internal details of the embryos, selected

stages were dissected in the appropriate plane with fine forceps while they were in

70% ethanol. All specimens were dried by the critical point technique, using CO2

with amyl acetate as the transition fluid, with a Hitachi HCP-1 apparatus. The
dried embryos were mounted on aluminum stubs, coated with a thin layer of

gold utilizing a Giko IB-3 ion coater, and examined with a Hitachi S-310 SEM.

In order to supplement and substantiate the results of the examination with

SEM, attentive observations on living materials were also carried out.
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RESULTS AND OBSERVATIONS

The 64-ccll stage

The outer surface of the embryo examined with the SEM was essentially smooth

(Figs. 2 and 3). For a while after cell division, thin cytoplamic processes like

microvilli could be seen on the cell surface bordering the interstices between the

daughter cells. The two or three polar bodies were present near the animal pole

(Fig. 2).

Examinations of the dissected embryos revealed the formation of the blastocoel,

which was enclosed by a layer of cells (Fig. 1). The cells of both hemispheres
were of nearly equal height at this stage, those of the vegetal (dorsal) hemi-

sphere being slightly taller than those of the animal (ventral) hemisphere

(Fig. la). On the cell surface bordering the blastocoel numerous cell processes
were extended from cells onto adjacent cells (Fig. Ib). The cell processes or

filopodia were about 0.2 to 0.5 //.m in diameter and varied from 2 p,m to over

10 /mi in length (Fig. Ib). The blastocoel was observed for a while after cell

division. By the time the divided cells adhered closely together, the blastocoel had

disappeared.

Gastrulation

In the egg of H. roretxl, similar to those of other ascidians, gastrulation began

during the seventh cleavage. The seventh cleavage began on the anterior part

of the dorsal (vegetal) hemisphere. After a while, divisions of all the cells of the

ventral (animal) hemisphere took place synchronously. After these divisions,

changes in cell shape and cellular architecture of the embryo progressed rapidly.

The outer surface of the dorsal cells became smaller than that of the vegetal

ones
; the meso- and endoderm cells at the dorsal hemisphere grew slightly long

and narrow, while the ectoderm cells at the ventral hemisphere became broad and

flat (Figs. 2, 3, 6: also, compare Fig. 6 to Fig. 1). At the same time a layer

of the ectoderm cells and that of the meso- and endoderm cells became adhered

closely together (Fig. 6). Thereafter, the blastocoel could no longer be observed

(Figs. 6-8).
The initiation of gastrulation was first detected by the reduction of the surface

area of the two cells of the dorsal hemisphere (Fig. 3). The two cells were

A7 ' 1 and A 7 ' 1 of Conklin's (190?) nomenclature. Examinations of the dissected

early gastrula along the midsagittal plane revealed that the two cells changed in

shape from tall columnar to wedge-shaped cells (Fig. 6). Their apices became

constricted and their bases enlarged (Fig. 6). Viewing from the dorsal pole, the

endoderm cells seemed to invaginate, led by the two cells (Fig. 4). In the dis-

sected early gastrula the layers of the ectoderm and endoderm cells adhered closely

together, and the ectoderm layer began to fold the endoderm layer (Figs. 6-8).

By further epiboly or enfolding movement of the ectoderm cells coinciding with

a folding down of the endoderm cells, the gastrocoel was formed (Figs. 8, 11)

The blastopore of the middle gastrula was of a peculiar form, wide in the

anterior and narrow in the posterior (Fig. 5). This might be due to different

outgrowths or epibolic movements of the ectoderm cells. The outgrowth began in
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FIGURE 1. Scanning electron micrograph (SEM) of the dissected 64-cell stage showing
the formation of the blastocoel (be), (la) The cells of both hemispheres are of nearly equal

height (D, dorsal side; V, ventral side). Bar, 50 nm. (Ib) Cell surface bordering the blastocoel.

The cells extend cytoplasmic processes or filopodia onto adjacent cells (arrows). Bar, 5 /*m.

The embryo is shown with the anterior end up and the posterior end down in all figures.

FIGURE 2. Early gastrula stage viewed from the ventral (animal) pole. The ectoderm

cells have divided seven times (pb, polar bodies). Bar, 50 /xm.

FIGURE 3. Initial gastrula stage viewed from the dorsal (vegetal) pole. Note the reduc-

tion of the surface area of the endoderm cells, especially the two cells marked by asterisks.

FIGURE 4. Early gastrula stage viewed from the dorsal pole. Emboly of the endoderm

cells begins. Asterisks show the two leading cells. Several meso- and endoderm cells are

dividing.

FIGURE 5. Middle gastrula stage viewed from the dorsal pole. The blastopore (bp) is
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the front of the anterior quadrants and progressed rapidly. At the right and
left sides of the blastopore the outgrowth was slow, while at the posterior pole
the outgrowth was further delayed (Figs. 4, 5). The gastrocoel cavity was wide
in the anterior, narrowing towards the posterior (Fig. 8). The cell surface

bordering the gastrocoel was generally round and smooth without cell processes

(Figs. 8, 11). At the late gastrula stage, the blastopore shifted posteriorly by

rapid epibolic movement of the anterior lip (compare Fig. 5 to Fig. 9). During
the succeeding phase of gastrulation, the blastopore shifted back from posterior
to dorsal by the outgrowth of the posterior lip. as well as that of right and left

side lips (compare Fig. 9 to Fig. 10). Coincident with the shift, the blastopore
became narrow and oval (Fig. 10). Examinations of the dissected embryos
showed that gastrulation was almost accomplished at this stage (Fig. 11).

At the middle gastrula stage the eighth division of the ventral ectoderm cells

occurred almost synchronously. The ninth division of the ectoderm cells took

place at the late gastrula stage. The middle gastrula was nearly circular in outline

viewed from the dorsal or ventral pole (Fig. 5). At the late gastrula stage the

embryo became elongated and egg-shaped, the posterior end being somewhat nar-

rower than the anterior (Fig. 10).

The process of closure of the blastopore temporally overlapped in part with

that of neurulation.

Nenntlation

The neural tube formation of the ascidian embryo progressed in a similar fashion

to that of vertebrates (Schroeder, 1970: Karfunkel, 1974). The neural plate cells

were distinguishable on the mid-anterior part of the dorsal side of the late gastrula

(Figs. 9, 10). They were flat in shape and consisted of several transverse rows

of cells. Neural tube formation proceeded from the posterior end to the anterior

end (Figs. 12, 14). Cells were heaped in a mass at the anterior end of the neural

fold (Fig. 12). The neural folds of the lateral edges of the neural plate rolled

toward the midline. The neural plate cells underwent a gradual elongation in the

early stages of neurulation, and then changed in shape from columnar to wedge-

shaped cells, the apices of which became narrow (Fig. 13). When the folds met

at the midline, the plate was folded into a tube (Fig. 14). The ectoderm lateral

to the neural plate was also carried to the midline, and formed the epidermis

covering the neural tube.

of a peculiar form, wide in the anterior and narrow in the posterior. This may be due to

different outgrowths of ectoderm cells.

FIGURE 6. Dissected initial gastrula stage along the midsagittal plane showing that the

cells of both hemispheres adhere very closely together. The ectoderm cells of the ventral

hemisphere (V) become shorter than the meso- and endoderm cells of the dorsal hemisphere (D).

The invaginating cell becomes wedge-shaped (asterisk).

FIGURE 7. Dissected early gastrula stage along the midsagittal plane. The cells of the

ventral hemisphere (V) begin to enfold those of the dorsal hemisphere (D).

FIGURE 8. Dissected middle gastrula stage along the midsagittal plane. By further

enfolding movement of the ectoderm cells (ec), the gastrocoel (gc) is formed (bp, blastopore;

en, endoderm cells).
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12
FIGURE 9. Late gastrula stage viewed from the dorsal side. The blastopore (bp) has

shifted from the mid-dorsal portion of the embryo to the posterior portion. The neural plate

cells (np) are distinguishable. Bar, 50 jam.
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DISCUSSION

Early morphogenesis, including gastrulation and neurulation, of animal eggs
is a phenomenon of many integrated cell movements, each of which depends directly
or indirectly on every other (Trinkaus, 1969). Morphogenetic movements always
involve deformation of constituent cells of the system. Based on accurate observa-
tions on living eggs and embryos, Conklin (1905) suggested two major factors for

ascidian gastrulation ; the first is the change in shape of the cells of the animal and

vegetal hemispheres, and the second is the overgrowth of the marginal cells of the

animal hemisphere. The present observations with SEM have fairly confirmed
these two factors. The change in shape of the cells during gastrulation and the

enfolding movement of the ectoderm cells can easily be imagined by comparing
SEM photographs of dissected gastrulae. Another feature of the cell architecture

during gastrulation of ascidian eggs may be the close adherence of the layer of the

ectoderm cells and that of the meso- and endoderm cells. The blastocoel was
observed in the dissected blastula for a while after cell division. However, by the

time the divided cells adhered closely together, the blastocoel had disappeared.

Pseudopodia observed on the cell surface bordering the blastocoel seem to con-

tribute to cell-to-cell adhesion.

Mancuso (1973), utilizing transmission electron microscopy, has observed

ultrastructural characteristics of the constituent cells in ascidian gastrula and

neurula, and revealed bundles of microtubles at the peripheral, external cytoplasm
of the neural blastomeres. At the early gastrula stage the endoderm cells changed
in shape from columnar to wedge-shaped cells. Similarly, the neural plate cells

changed in shape from flat, through columnar, to wedge-shaped cells. These

changes in shape might be caused by a cytoplasmic system acting at the surface

of wedge-shaped cells. It is expected that cytoplasmic contracting systems such

as microfilaments act at the surface of the wedge-shaped cells.

In conclusion, the present observations with SEM of the ascidian morphogenesis
has fairly confirmed the results of descriptive studies of ascidian embryogenesis.

The author wishes to express his gratitude to Dr. T. Numakunai of Asamushi
Marine Biological Station of Tohoku University for supplying the materials

FIGURE 10. Neural plate stage viewed from the dorsal pole. The embryo becomes

elongated and egg-shaped. The blastopore (bp) becomes narrow and oval. Neural plate

cells (np) are flat in shape and consist of several transverse rows of cells.

FIGURE 11. Dissected neural plate stage along the sagittal plane. Enfolding movement of

the ectoderm cells has nearly completed (bp, blastopore; gc, gastrocoel).

FIGURE 12. Middle neurula stage viewed from the dorsal pole. The neural tube forma-

tion takes place from the posterior end of the embryo to the anterior end. At the anterior end

of the neural fold (nf) cells are heaped in a mass.

FIGURE 13. (13a) Dissected early-to-mid neurula stage along the transverse plane show-

ing rolling-up of the neural plate cells (np) (ep, epidermis). Bar, 30 fj.ni. (13b) Higher
magnification of the neural plate cells showing close adherence of the cells to one another.

They are wedge-shaped. Bar, 10 /xm.

FIGURE 14. Late neurula stage viewed from the dorsal side. The folds of lateral edges
of the neural plate meet at the midline and then the plate is folded into tube (nt, neural tube).
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and to Dr. M. Yamamoto of Tamano Marine Laboratory of Okayama University

for teaching him SEM technique. All observations with the SEM have been

carried out at Tamano Marine Laboratory. He thanks Prof. M. Yoshida of

Tamano Marine Laboratory for affording him opportunities to utilize their facilities.
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SUMMARY

1. Cellular morphology and architecture during early morphogenesis of the

ascidian embryo were examined by SEM.

2. The outer surface of the embryo was essentially smooth. The blastocoel

could be seen in the dissected blastula. On the cell surface bordering the

blastocoel, numerous pseudopodia extended from cells onto adjacent cells. These

pseudopodia were suggested to contribute to cell-to-cell adhesion.

3. Before the initiation of gastrulation, a layer of the cells of the animal

(ventral) hemisphere and that of the cells of the vegetal (dorsal) hemisphere
adhered closely together. The blastocoel could no longer be observed.

4. The gastrulation began during the seventh cleavage. The gastrocoel was

formed by a folding of the two layers of the cells. Examinations of the dis-

sected gastrulae suggested two cooperative forces for the gastrulation : first, the

epibolic or enfolding movement of the ventral ectoderm cells and secondly, the

change in shape of the constituent cells.

5. The neural tube formation progressed in a similar fashion to that of

vertebrates.
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